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Abstract 
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Summary 

•  Why look at the 2ωpe instability in ignition-scale hohlraums? 
  (gradient and collisional thresholds/ intensity swelling for  
   obliquely incident light/ hot electrons and preheat) 

•  Recent experimental feedback on the 2ωpe instability 
  (direct drive experiments/ window hot electrons in hohlraums- 
   S. Regan et. al.) 

•  The energy at risk to the 2ωpe instability at other times and  
   places in hohlraums is being assessed. 

•  New nonlinear physics: sometimes the Raman-scattered light 
   can excite the 2ωpe instability.  

• Some preheat considerations: strong dependence on Thot;  
   energy distribution functions matter. 
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The 2ωpe instability 

• often has the lowest intensity threshold 
            - threshold even lower for overlapped beams 

• produces high temperature electrons (Thot~70keV) 
            - hence preheat concern even for fabs<1%! 

• can occur in window, ablator, and liner plasmas 
            - for window plasma, see Sean Regan et. al. 
            - effect can be enhanced in the ablator and  
              liner plasmas with large beam spots 

• is not included in the standard hohlraum lpi modeling  

Why look at the 2ωpe instability? 
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The threshold intensity due to density gradients  
is rather low 
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Examples:  Be   Τkev=2.5   λµ=.35 

       - Lµ=300       I>1.4x1014 W/cm2 

          - Lµ=1000      I>4x1013 W/cm2 

Assuming normal incidence 

Note that  the intensity can swell significantly for obliquely 
Incident light with angle of incidence ~ 60 degrees 

Interesting question: how do speckles affect threshold? 
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Threshold intensity due to collisions is rather low in low Z 
material, rather high in Au. 

Collisional threshold 
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Examples;    ln=7    Z=4  (Be)   TkeV=2.5   λµ=.35  α~1/3  
                      I> 5x1013 W/cm2 

                                 ln=7     Z=50  (Au)  TkeV=4   λµ=.35   α~1/3 
                      I>2x1015 W/cm2  
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For angles of incidence ~60 degrees, the threshold intensity is 
significantly reduced by swelling of the incident intensity  

• Simple example---linear density profile  n=ncrz/L 

• obliquely incident light turns at n=ncrcos2θ


• ε=cos2θ-z/L and vgz becomes small at the turning point 
   and so E swells 

• Airy function solution 
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The classic signature of the 2ωpe instability is 
3ω0/2 emission 

Some Osaka experiments are illustrative 
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A better understanding of Thot generated by the  
2ωpe instability is needed
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In recent experiments, Thot~60-70 keV attributed to 2ωpe instability  
both in direct drive (LLE) and in hohlraum window plasmas (Regan, et. al.) 

This Thot is about what one might expect to be generated by the forward 
directed plasma wave in the hot plasma limit 

Then 

However, early (strongly driven) 2ωpe simulations suggested 

For  

€ 

Thot ≅ 35keV

More understanding of the dependences of Thot on intensity 
and Tcold is needed. 



Identifying Marker. 10


Summary 
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The 2ωpe instability continues to be a concern in 
direct drive experiments


In recent “direct drive”experiments: 

fabs~1-15% into hot electrons with Thot~60-70 keV 
Is attributed to the 2ωpe instability 
C. Stoeckl, et. al., PRL 90,235002-1, 2003 

When above threshold in implosion experiments,  
fabs~15% is inferred to generate the preheat  
if the hot electron transport is diffusive, fabs~1-2% 
if their transport is more directional (Delettrez) 

Note that net intensity is found to matter,  
not single beam intensity 
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The 2ωpe instability was observed for the first time in  
hohlraums in Omega experiments (Regan, et. al.) 

Sean Regan, et. al.  
submitted to PRL 
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Hot electron (Thot~50+keV) generation was correlated with 
blow-up of the window and with 3/2 ω0 emission.  

S. Regan, et. al.  
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S. Regan, et. al.  

The hot electron temperature becomes ~70keV for  
the window hots 
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Portions of the inner beam skim plasma 
with density near quarter-critical density


300eV CH: 14.5ns 

300eV HDC: 10.7ns 300eV Be: 12.5ns 

285eV Be: 13.2ns 
Richard Town 
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We are now monitoring the “energy at risk” 
to the 2ωpe instability within the hohlraum


The energy at risk diagnostic 

              • monitors laser energy striking quarter critical density 
                with sufficient intensity to be above threshold for the  
                2ωpe instability 

              • was first developed to understand the window hots  
                 at early time 

              • the collisional threshold is now included 

Application to other times and places within the nominal 
NIF ignition hohlraum is underway by Nathan Meezan 
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Cone
 E @ nc/4 (kJ)
 E @ risk (kJ)
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Preliminary estimate for energy at risk in a 
recent point design: 4 kJ from inner cones.


E @ risk is power at nc/4 × (I-Ithresh)/I

Ithresh = max(Icoll, Igrad)

Icoll (1014)= 0.46 Z2/T3

Igrad (1014)= 70.5*T/(Lµm*0.351)

E @ risk is laser energy, not hot e- energy 
If fabs<10%, Ehot<400J 
NIF hot e- spec @ peak ~ 6.4 kJ @ 70 keV


Power @ risk for NIF ignition design 

Inner quad 

23.5 º cone 
30 º   cone 

Thresholds will be improved 
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For common conditions accessed by the inner beams, the  
Raman-scattered light can excite the 2ωpe instability 

• stimulated Raman backscatter at n/ncr=.1 and Te=2.5 keV 

 ωpe/ω0=.316     ωs/ω0=.633   ωs~2ωpe! 

 At somewhat higher density, ωs<2ωpe but encounters ωs~2ωpe  
 as the scattered light wave propagates to lower density plasma. 

• Expect regime in which SRS becomes more absorptive, i.e., 
  SRS-driven plasma waves makes hot electrons and the scattered  
 light wave excites the 2ωpe instability, making even hotter electrons. 

• Possible saturation mechanism for strongly-driven SRS 
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Excitation of the 2ωpe instability by the  
Raman-backscattered light 

Consider previous example: n/ncr=.1  Te=2.5 keV  ωsc=.633ω0     

Assume   Isc~.2I0     I0=5x1014 W/cm2    Isc~1014 W/cm2   (r~20%) 

Threshold for excitation of the 2ωpe instability by the scattered light, 
noting that λsc=.55µm and taking α~1/3 

• Gradient threshold  (L=1mm)        ITG~2.5x1013 W/cm2  

• Collisional Threshold  (Be)            ITc~2.5x1012 W/cm2 
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Various consequences entail 

• less Raman-scattered light measured but more hot electrons 

• a higher temperature component (~70keV?) 

• 3ω/2 emission at ~.95ω0 (for this example) 

• nonlinear reduction of level of SRS 

             Isc~ITG?    (2ωpe instability probably not this efficient) 
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Only rather energetic electrons can penetrate the 
ablator of an ignition-scale capsule


Example: ρΔR~30 mg/cm2 E> 200 keV 
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Thot matters a lot!


fraction 

Thot 
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Can the sensitivity of the preheat to Thot be exploited? 

• Win by finding ways to reduce Thot 
       for example, by inducing short wavelength ion fluctuations 

• The most dangerous portion of the heated electron distribution 
   may be under populated 

• Important that FFLEX have higher energy channels in order 
  to be more sensitive to the electrons with energy >200 keV 
           currently the highest energy channel is about 120 keV 

PIC simulation of Raman backscatter 
n/ncr=.15, Te=2 keV 
Note that distribution diminishes at E>4-5Thot 
Wilks and Kruer (2005) 
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